### Article

## Взаимодействие молекул РНК: энергия связывания и статистические свойства случайных последовательностей

We compute analytically the mean number of common sites, WN(t), visited by N independent random walkers each of length t and all starting at the origin at t=0 in d dimensions. We show that in the (N−d) plane, there are three distinct regimes for the asymptotic large-t growth of WN(t). These three regimes are separated by two critical lines d=2 and d=dc(N)=2N/(N−1) in the (N-d) plane. For d<2, WN(t)∼td/2 for large t (the N dependence is only in the prefactor). For 2<d<dc(N), WN(t)∼tν where the exponent ν=N−d(N−1)/2 varies with N and d. Ford>dc(N), WN(t)→const as t→∞. Exactly at the critical dimensions there are logarithmic corrections: for d=2, we get WN(t)∼t/[lnt]N, while for d=dc(N), WN(t)∼lnt for large t. Our analytical predictions are verified in numerical simulations.

This is a companion book to Asymptotic Analysis of Random Walks: Heavy-Tailed Distributions by A.A. Borovkov and K.A. Borovkov. Its self-contained systematic exposition provides a highly useful resource for academic researchers and professionals interested in applications of probability in statistics, ruin theory, and queuing theory. The large deviation principle for random walks was first established by the author in 1967, under the restrictive condition that the distribution tails decay faster than exponentially. (A close assertion was proved by S.R.S. Varadhan in 1966, but only in a rather special case.) Since then, the principle has always been treated in the literature only under this condition. Recently, the author jointly with A.A. Mogul'skii removed this restriction, finding a natural metric for which the large deviation principle for random walks holds without any conditions. This new version is presented in the book, as well as a new approach to studying large deviations in boundary crossing problems. Many results presented in the book, obtained by the author himself or jointly with co-authors, are appearing in a monograph for the first time.

In the first part of the paper we consider a "random flight" process in \(R^d\) and obtain the weak limits under different transformations of the Poissonian switching times. In the second part we construct diffusion approximations for this process and investigate their accuracy. To prove the weak convergence result we use the approach of Stroock and Varadhan (1979). We consider more general model which may be called "random walk over ellipsoids in \(R^d\)". For this model we establish the Edgeworth type expansion. The main tool in this part is the parametrix method (Konakov (2012), Konakov and Mammen (2009)).

We discuss conditions for unique ergodicity of a collective random walk on a continuous circle. Individual particles in this collective motion perform independent (and different in general) random walks conditioned by the assumption that the particles cannot overrun each other. Additionally to sufficient conditions for the unique ergodicity we discover a new and unexpected way for its violation due to excessively large local jumps. Necessary and sufficient conditions for the unique ergodicity of the deterministic version of this system are obtained as well. Technically our approach is based on the interlacing property of the spin function which describes states of pairs of particles in coupled processes under study.

We study the planar matching problem, defined by a symmetric random matrix with independent identically distributed entries, taking values 0 and 1. We show that the existence of a perfect planar matching structure is possible only above a certain critical density of allowed contacts, $p_{c}$. This problem has an important application for the prediction of the optimal folding of RNA-type polymers. Using an alternative formulation of the problem in terms of Dyck paths and a matrix model of planar contact structures, we provide an analytical estimation for the value of the transition point, $p_{c}$, in the thermodynamic limit. This estimation is close to the critical value, $p_{c}\approx 0.38$, obtained in numerical simulations based on an exact dynamic-programming algorithm. We characterize the corresponding critical behavior of the model and discuss the relation of the perfect-imperfect matching transition to the known molten-glass transition in the context of random RNA secondary structure's formation. In particular, we provide strong evidence supporting the conjecture that the molten-glass transition at $T=0$ occurs at $p_{c}$

The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.

Radiation conditions are described for various space regions, radiation-induced effects in spacecraft materials and equipment components are considered and information on theoretical, computational, and experimental methods for studying radiation effects are presented. The peculiarities of radiation effects on nanostructures and some problems related to modeling and radiation testing of such structures are considered.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.